فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    19
  • شماره: 

    1
  • صفحات: 

    1-18
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    51
  • دانلود: 

    5
چکیده: 

انتظار می ­رود سامانه های پیشنهاد­گر (RS) قلم های دقیق را به مصرف کنندگان پیشنهاد دهند. شروع سرد مهم ­ترین چالش در RS ها است. RS های ترکیبی اخیر، دو مدل پالایش محتوا پایه (ConF)و پالایش مشارکتی (ColF) را با هم ترکیب می­ کنند. در این پژوهش، یک RS ترکیبی مبتنی بر هستان شناسی معرفی می ­شود که در آن هستان­ شناسی در بخش ConF به کار رفته است، این در حالی است که ساختار هستان­ شناسی توسط بخش ColF بهبود داده می ­شود. در این مقاله، رویکرد ترکیبی جدیدی مبتنی بر ترکیب شباهت جمعیت شناختی و شباهت کسینوسی بین کاربران به ­منظور حل مشکل شروع سرد از نوع کاربر جدید، ارائه شده است. همچنین، رویکرد جدیدی مبتنی بر ترکیب شباهت هستان­شناسی و شباهت کسینوسی بین اقلام به منظور حل مسأله شروع سرد از نوع قلم جدید، ارائه شده است. ایده اصلی روش پیشنهادی، گسترش پروفایل های کاربر/ قلم بر اساس سازوکارهای مختلف برای ایجاد پروفایل با عملکرد بالاتر برای کاربران/قلم ­ها است. روش پیشنهادی در یک مجموعه داده واقعی ارزیابی شده است و آزمایش­ ها نشان می­ دهند که روش پیشنهادی در مقایسه با روش های پیشرفتهRS، به خصوص در مواجهه با مسأله شروع سرد، عملکرد بهتری دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 51

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 5 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    9
  • شماره: 

    2
  • صفحات: 

    249-263
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    90
  • دانلود: 

    0
چکیده: 

Background and Objectives: The primary purpose of recommender systems is to estimate the users' desires and provide a predicted list of items based on relevant data. Recommender systems that suggest items to users face two Cold Start and sparse data challenges. Methods: This paper aims to propose a novel method to overcome such challenges in recommender systems. Singular value decomposition is a popular method to reduce sparse data in recommender systems by reducing dimensions. However, the basic singular value decomposition can only extract those feature vectors of users and items that may be recommended with lower recommendation precisions. Notably, using the similarity criteria between entities can reduce Cold Start to resolve the singular value decomposition problem by extracting more refined factor vectors. Besides, considering the context's dimensions as the third dimension of the matrix requires using another flexible algorithm, such as tensor factorization, which offers a viable solution to minimize the sparse data challenge. This study proposes TCSSVD, a novel method to resolve the challenges mentioned above in recommender systems. First, a two-level matrix is obtained using the similarity criteria between the user and the item to reduce the Cold Start challenge. In the second step, the contextual information is used by tensor in two-level singular value decomposition to reduce the challenge of sparse data. Results: For reviewing the proposed method, these two data sets, IMDB and STS, were used because of applying user and item features and contextual information. The RMSE criterion (95% accuracy) was used to investigate the predictions' accuracy. However, since the user's rating of the item is particularly important in recommender systems, compared with other methods, such as tensor factorization, HOSVD, BPR, and CTLSVD, the TCSSVD method uses the following criteria: Precision, Recall, F1-score, and NDCG. Conclusion: The findings indicated the positive effect of using the innovative similarity criteria on the extraction of user and item attributes to reduce the complications deriving from the Cold Start challenge. Also, the use of contextual information through the tensor in the TCSSVD method reduced the complications related to sparse data. The results improve the recommendation accuracy of the recommender systems.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 90

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2010
  • دوره: 

    2
  • شماره: 

    4
  • صفحات: 

    79-87
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    285
  • دانلود: 

    0
چکیده: 

Recommender systems have become significant tools in electronic commerce, proposing effectively those items that best meet the preferences of users. A variety of techniques have been proposed for the recommender systems such as, collaborative filtering and content-based filtering. This study proposes a new hybrid recommender system that focuses on improving the performance under the “new user Cold-Start” condition where existence of users with no ratings or with only a small number of ratings is probable. In this method, the optimistic exponential type of ordered weighted averaging (OWA) operator is applied to fuse the output of five recommender system strategies.Experiments using MovieLens dataset show the superiority of the proposed hybrid approach in the Cold-Start conditions.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 285

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    11
  • شماره: 

    3
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    95
  • دانلود: 

    0
چکیده: 

Recommender system based on collaborative filtering (CF) suffers from two basic problems known as Cold Start and sparse data. Appling metric similarity criteria through matrix factorization is one of the ways to reduce challenge of Cold Start. However, matrix factorization extract characteristics of user vectors & items, to reduce accuracy of recommendations. Therefore, SSVD two-level matrix design was designed to refine features of users and items through NHUSM similarity criteria, which used PSS and URP similarity criteria to increase accuracy to enhance the final recommendations to users. In addition to compare with common recommendation methods, SSVD is evaluated on two real data sets, IMDB and STS. Experimental results depict that proposed SSVD algorithm performs better than traditional methods of User-CF, Items-CF, and SVD recommendation in terms of precision, recall, F1-measure. Our detection emphasizes and accentuate the importance of Cold Start in recommender system and provide with insights on proposed solutions and limitations, which contributes to the development.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 95

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    15
  • شماره: 

    7
  • صفحات: 

    197-214
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    4
  • دانلود: 

    0
چکیده: 

Recommender systems are used in various fields such as movies, music, and social networks. Recommender systems aim to provide attractive offers to users according to their performance in the system. The most popular recommender systems are content-based models and collaborative filtering methods. One of the most important challenges and problems in recommender systems is the challenge of users' Cold Start. So far, various methods such as machine learning algorithms, optimization approaches, and statistical methods, have been proposed by other researchers in improving internet marketing strategy and overcoming the Cold-Start problem, which despite having numerous applications, still could not solve the Start problem. This article will investigate the problem of Cold Start users' by presenting a recommendation model based on a deep neural network and considering the problem of improving the internet (network) marketing strategy. In this article, the relevant simulation is done on the popular Movielens dataset, which is from 2015, and the evaluations of the methods presented on this dataset are compared

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 4

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    2
تعامل: 
  • بازدید: 

    366
  • دانلود: 

    709
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 366

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 709
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

Mohammadi Seyed Ali | ANDALIB AZAM

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    3
تعامل: 
  • بازدید: 

    257
  • دانلود: 

    0
چکیده: 

THE INCREASING VOLUME OF INFORMATION ABOUT GOODS AND SERVICES HAS BEEN GROWING CONFUSION FOR ONLINE BUYERS IN CYBERSPACE AND THIS PROBLEM STILL CONTINUES. ONE OF THE MOST IMPORTANT WAYS TO DEAL WITH THE INFORMATION OVERLOAD IS USING A SYSTEM CALLED RECOMMENDER SYSTEM. THE TASK OF A RECOMMENDER SYSTEM IS TO OFFER THE MOST APPROPRIATE AND THE NEAREST PRODUCT TO THE USER'S DEMANDS AND NEEDS. IN THIS SYSTEM, ONE OF THE MAIN PROBLEMS IS THE Cold Start CHALLENGE. THIS PROBLEM OCCURS WHEN A NEW USER LOGS ON AND BECAUSE THERE IS NO SUFFICIENT INFORMATION AVAILABLE IN THE SYSTEM FROM THE USER, THE SYSTEM WON’T BE ABLE TO PROVIDE APPROPRIATE RECOMMENDATION AND THE SYSTEM ERROR WILL RISE. IN THIS PAPER, WE PROPOSE TO USE A NEW MEASUREMENT CALLED OPINION LEADERS TO ALLEVIATE THIS PROBLEM. OPINION LEADER IS A PERSON THAT HIS OPINION HAS AN IMPACT ON THE TARGET USER. AS A RESULT, IN THE CASE OF A NEW USER LOGGING IN AND THE USER – ITEM’S MATRIX SPARSENESS, WE CAN USE THE OPINION OF OPINION LEADERS TO OFFER THE APPROPRIATE RECOMMENDATION FOR NEW USERS AND THEREBY INCREASE THE ACCURACY OF THE RECOMMENDER SYSTEM. THE RESULTS OF SEVERAL CONDUCTED TESTS SHOWED THAT OPINION LEADERS COMBINED WITH RECOMMENDER SYSTEMS WILL EFFECTIVELY REDUCE THE RECOMMENDATION ERRORS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 257

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Ravanmehr R. | Mirhasani M.

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    6
  • شماره: 

    4
  • صفحات: 

    251-264
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    159
  • دانلود: 

    0
چکیده: 

The movie recommendation systems are always faced with the new movie Cold Start problem. Nowadays, social media platform such as Twitter is considered as a rich source of information in various domains, like movies, motivated us to exploit Twitter's content to tackle the movie Cold Start problem. In this study, we propose a hybrid movie recommendation method utilizing microblogs, movie features, and sentiment lexicon to reduce the effect of data sparsity. For this purpose, first, the movie features are extracted from the Internet Movie Database (IMDB), and the average IMDB score is calculated during the 7-days opening of the movie. Second, the related tweets of the movie and the cast are retrieved by the Twitter API. Third, the polarity of tweets and the public’ s feeling towards the target movie is extracted using sentiment lexicon analysis. Finally, the results of the three previous steps are integrated, and the prediction is obtained. Our results are compared with the sales volume of the target movie in 7-days opening, which is available in the Mojo Box office. In addition to the real-world benchmarking, we performed extensive experiments to demonstrate the accuracy and effectiveness of our proposed approach in comparison with the other state-of-the-art methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 159

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    2
  • شماره: 

    1
  • صفحات: 

    67-76
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    22
  • دانلود: 

    0
چکیده: 

امروزه میزان و اهمیت داده های موجود در اینترنت به طور تصاعدی در حال افزایش است که انتخاب یک گزینه مطلوب از بین گزینه های بسیار زیاد می تواند خسته کننده و وقت گیر باشد. هدف سامانه های پیشنهاددِه، این است که این فرآیند را با یافتن آیتم های مناسبی که بیشتر مورد علاقه کاربران هستند، تسهیل کنند. تکنیک های پیشنهادی سامانه های پیشنهاددِه موجود از مشکلات رایجی مانند پراکندگی داده، شروع سرد و مشکلات کاربران جدید رنج می برند. در این مقاله تمرکز اصلی بر استفاده از اطلاعات دامنه های دیگر برای ایجاد سامانه های پیشنهاددِه دامنه متقابل است. سامانه های پیشنهاددِه دامنه متقابل می توانند موقعیت های شروع سرد و کاربران جدید را به خوبی مدیریت کنند، در این مقاله ابتدا مدلی بر پایه شبکه های عصبی گرافی، الگوی تعاملات کاربران و آیتم ها را در هر دامنه به صورت مستقل کشف می کند و در گام بعد یک شبکه عصبی بازنمایی بدست آمده برای کاربران شروع سرد را از دامنه مبدأ به دامنه هدف منتقل می کند. نتایج نشان می دهد مدل پیشنهادی در مقایسه با سایر مدل ها عملکرد بهتری برای رتبه بندی آیتم ها دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 22

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Moazedi Maryam | Mosavi Mohammad Reza

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    16
  • شماره: 

    1
  • صفحات: 

    147-161
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    6
  • دانلود: 

    0
چکیده: 

The spoofing subject is becoming ever increasingly more severe. In addition to the flow of technology, the availability of software-defined radio platforms has increased. Usually, detecting the spoofing is performed by introducing the features that are difficult for the deceiver to counterfeit. Spoofing and countering can be performed in different parts of a GPS receiver. In recent years, less attention has been paid to defense at Cold-Start. This research presents that the spoofing attack can be diminished during the initial Start-up process with a very short effective time. This low-cost method introduces a new decision rule based on a multiple statistical hypothesis test to identify fake peaks in correlation output of acquisition and extract the authentic peaks utilizing the wavelet transform or peak removal process. The main distinction of this method with previous works is investigating different amplitude ratios of spoofing signal to authentic. Simulation results on 10 data sets show that the probability of correct detection and mitigation is more than 90%.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 6

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button